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A new integral representation of the transition rate holds for any friction and is 
shown to allow a feasible evaluation in a wide friction range. Analytic 
approximations include the (high-friction) Kramers result with the leading 
correction, as well as a low-friction case. The method is complementary to a 
recent one of Melnikov and Meshkov. 
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1. I N T R O D U C T I O N  

The mean time for a transit ion from one metastable state to the other  is in 
fact determined by a partial differential equat ion of  second order,  involving 
the adjoint L § of the Fokker  Planck opera tor  L. '~) To solve it in phase 
space is such a difficult numerical  task that  approximat ions  are essential. 
An efficient one is based on the fact that  the transit ion rate is directly 
related to the smallest nonzero  eigenvalue 2 of L, L +, as long as the noise 
is "moderate"  in the sense that  the s tat ionary probabil i ty density remains 
concentrated near the potential  minima and, equivalently, that  the remain- 
ing nonzero  eigenvalues are of  a higher order  of magnitude/2'3~ Numerica l  
methods  to obtain 2 are shown, for example, in Ref. 4. It  is of course 
tempting to search for analytic expressions for 2. Two integral represen- 
tations of 2 are available, bo th  valid for any friction. One  of  them was put  
forward in Ref. 5, and a new one, to be presented here, has the advantage  
of establishing the connect ion with well-known theories. In fact, for weak 
noise (thermal energy ~ threshold height) and in a wide friction range 

1 Hasler AG, Research Labs, CH-3000 Bern, Switzerland. 

751 

0022-4715/87/1100-0751505.00/0 �9 !987 Plenum Publishing Corporation 



752 Ryter 

(reaching from a value of order T to infinity) it reduces to the mean first 
passage time on the separatrix of the noiseless motion. Only for rather high 
friction r/ can the corresponding line integral be evaluated by Laplace's 
method, leading to the Kramers result/6) With decreasing q a better 
approximation of both the potential threshold and the separatrix becomes 
necessary, resulting in a correction to the Kramers formula; in the general 
case (within the admitted friction range) a Runge-Kutta method can be 
used. A specific approximation holds for rather low friction. An advantage 
of the present approach is that it clearly exhibits some validity limits. It 
turns out that its results are reliable where a recent method (7) becomes 
inaccurate. 

Excellent reviews of numerous further approaches are given in Refs. 8 
and 9; the pioneering work is of course that of Kramers. (1~ 

We briefly specify the model. The system under consideration is 

2 = v, ~ = - f l y  - U ' ( x )  (1.1) 

where U(x)  is a double-well potential with a smooth threshold at x = 0 and 
with U(0)=0 .  As in Ref. 10, we set both the mass and Boltzmann's 
constant equal to unity. Contact with a thermal bath of temperature T 
leads to fluctuations determined by the Fokke~Planck  equation 

p., = - v p , x  + [(t/v + U') P],v + qTP,vv (1.2) 

Note that the stationary solution 

po(x ,  v) = c e x p ( -  E/ T ) ,  E (x ,  v) = v2/2 + U(x )  (1.3) 

does not depend on q. 

2. S O M E  GENERAL RELATIONS FOR BISTABLE S Y S T E M S  

The essential tools for the following discussion apply for any 
(autonomous) bistable system and are presented for convenience in their 
general form. With variables x 1 ..... x u (x I = x, x 2 = v in the particular case) 
the Fokker Planck operator L and its adjoint, the generator L +, are 

L = ( # / a x i ) [ -  Ki(x) + (O/#x k) Di~(x) ] 

L + = Ki(x) O/~xi-3v Dik(x) 02/Ox i Ox k 
(2.1) 

Here the drift field K(x) is merely supposed to be bistable, and D(x)  must 
be symmetric and nonnegative. 
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2.1.  P r o p e r t i e s  at  M o d e r a t e  N o i s e  

As outlined in Refs. 2 and 3, moderate noise implies that the 
stationary distribution p0(x) is concentrated onto two well-separated 
domains NA,8 of x space around the attractors A, B of K(x), so that 

Po,~,B ~ j~ po(X) dx, POA + P0B ~ 1 (2.2) 
�9 ~ A  ,B 

Furthermore, transitions between NA,B were shown to form a nearly 
Markovian jump process, with transition rates 

r A ~ B = 2 p o s ,  rB~A =)~PoA (2.3) 

2 is the lowest nonzero eigenvalue of L, L+. 
We now restate and extend some findings of Ref. 2 about the first non- 

trivial eigenfunction ql(x) of L+: L+ql  = -2q~. It was shown to assume 
the values Cpo ~ on ~A and --CpoA on ~e .  Therefore, with C = 2 ,  the 
shifted function 

c](x) _& ql(x) + POA -- POB (2.4) 

satisfies 

1 on ~A and L+~ = - 2 q l  (2,5) 
q =  - 1  on Ne 

It is interesting to consider the integral 

F A [ d S  i il~- = -  poD q,k 
Jz 

(2.6) 

taken over the surface Z, where ~ = 0 (dS is an element of Z). Clearly, it 
equals the integral of ~k- - ( p o d  q,k),i over the half-space bounded by Z and 
containing ~A. This integrand can be rewritten as 

- (poDik),~ gl,k + po(Kigl,, + )oq~ ) = J~gl,, + 2Poq~ 

where J is the stationary probability current. Since j l  = 0, the first term , i  

equals (Jic]),i and does not contribute, as can be seen after retransforming 
to a surface integral. We are thus left with 

F = 2Po~ qlA = 22poA POe (2.7) 

The eigenvalue 2 is thus reduced to F. Moreover, comparison with (2.3) 
shows that 

r A ~ = F / 2 p o A ,  FB~A = F/2poB (2.8) 

which denotes an integral representation of the transition rate. 

822/49/3-4-23 
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Two important properties of ~ can be derived by setting L +~ ~ 0, with 
the values (2.5) on A and B now imposed as boundary conditions (this 
approximation was discussed in Ref. 2 by means of a Feynman-Kac result). 
In Ref. 2 it was shown that 

~(x) -- PA(X) -- Ps(x) (2.9) 

where PA(X) denotes the probability that from the starting point x the 
attractor A (in fact, its immediate neighborhood; see Ref. 2) is reached 
before B (P8 analogously). Note that Z is the "stochastic separatrix," since 
PA = Po there. 

Furthermore, ~ gives the mean first passage time 0(x) on Z from any 
starting point x, normalized by the values 0A,B on the respective ~A.a: 

Iq(x)l = 0(X)/0A,~ (2.10) 

This follows from the fact that on each side of Z, L + 0 = - 1 with 0 = 0 on 
Z, (1) so that L+O/OA,s --0 -1 ~0 ,  while (2.5) gives the adequate boun- A,B 
dary values. 

By (2.8) and (2.9) the value of F may be interpreted as the rate of first 
arrivals on Z of trajectories coming from either of ~A,B. 

2.2. Low-Noise  Approx imat ion  

At low noise an important further step consists in introducing the 
smallness parameter e of the diffusion 

o i k ( x )  = edik(X) (2.11 ) 

and in substituting 

= ( 2 ~  !/2 /,p(x) 
~(x) ~ erfEp(x)/(2e) '/2] \ ~ 5 /  Jo exp ( - z2 /2e )  dz (2.12) 

(see also Ref. 11). So far this merely defines p(x), which may itself depend 
on e. Clearly, p also vanishes on Z, and it has the same sign as ~. Inserting 
(2.12) into L + ~ 0  yields 

(L + p = ) Kip.i + edikp.ik = pd~kp.ip.k (2.13) 

The "boundary layer approximation" (BLA) consists in neglecting the term 
proportional to e in (2.13). The legitimation of this step will be discussed in 
Section 4.4. When K does not involve 5, it yields an e-independent p, and 
(2.12) then gives the scaling of ~ with 5, in particular, a layer of a width 
proportional to x/~, where ~ changes from 1 to - 1 .  As a further con- 
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sequence, /Cp, i vanishes on Z (where p = 0), so that K must be tangential 
to Z. Since K is bistable, the only tangential surface that does not include 
an attractor is the separatrix (or boundary) Of 2 of the two domains of 
attraction E2A, B of K. Thus 

Z -  0E2 (2.14) 

For  evaluating F one needs the gradient of c] on Z, 

VO I z = (Z/roe)l/2 Vp [z (2.15) 

Still in the BLA, it was shown in Ref. 12 that 

b ~ (Vplan) 2 (2.16) 

is determined by the linear equation 

K'b i -  2gb + 2 d =  0 (2.17) 

where g is the increase of the normal component of K and d is the scaled 
diffusion normal to 0f2. 

3. T H E  S E P A R A T R I X  

The drift field K, given by the right-hand sides of (1.1), has an unstable 
equilibrium point (more precisely, a saddlepoint) at x =0 ,  v = 0, and the 
separatrix v , (x )  is the integral line of K that ends there: 

v 'sv ,+r/Vs+ U ' = 0  with vs (0)=0  (3.1) 

The slope at the saddle is 

6' s = -r / /2  - [(q/Z) 2 - U"] 1/2 (3.2) 

and the next higher derivatives are 

62 = - U ' / ( 3 6 ;  + rl) (3.3) 

. . . .  - - ( U  . . . . . . .  2 ~, Vs = + 3v, )/(4v, + t/) 

(the caret will denote any quantities referring to the saddle). The turning 
points v; = ~ are on the x axis, and v'~vs = - U '  there. A plot of Vs(X) is 
given in Fig. 1. Clearly, for t / ~  0 the spiral becomes arbitrarily tight out- 
side the limiting curve Vo(X ) determined by E =  0: 

Vo(X) = [ - 2 U ( x )  ] 1/2 (3.4) 
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X 

Fig. 1. The separatrix 0s between the two domains of attraction (white and black) 
approaches the line E = 0 (corresponding to the threshold energy) when the friction ~/becomes 
small. 

4. C O N C L U S I O N S  F R O M  THE B O U N D A R Y  LAYER 
A P P R O X I M A T I O N  

4.1. The Integral  for the Transit ion Rate 

In view of  (2.14) and  of  D 11 = D 1 2 =  D 21 = 0 and  D 22 = qT, the integral  
(2.6) reduces to 

qT f dx po[x, vs(x)]  I~ , s  vs(x)]l (4.1) F =  

which is to be con t inued  p rope r ly  at  the tu rn ing  points.  
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From (1.1) it readily follows t h a t / ) =  - q v  2, so that 

Jo E[x ,  Vs(X)] = --t 1 Vs(X') dx' A= tli(x) (4.2) 

[note that I(x) increases monotonically from both sides of the saddle]. 
Thus, with (1.3), the transition rate (2.8) assumes the form 

rA ~ B  = ( N A / 2 )  17 f dx e x p [ -  (r//T) I (x)]  [t].v[x, G(x)]l  (4.3) 

The factor NA is easily recognized as not being dependent on q; with the 
Gaussian approximation of Po near the attractor A it becomes 

NA = exp(UA/T) ( U])~/2/Zzc (4.4) 

and involves both the Arrhenius factor and the information about the 
potential minimum at A. 

4.2. The Gradient  Term 

It remains to work out ]q,~l on the separatrix. Clearly, 

lqA = IVql 1:, 1:(x) ~ [v 'Z(x)+ 1]-1/2 (4.5) 

The adequate decomposition (2.11) of D is d22= 1 (d11= d12= d 21 =0) ,  so 
that ~ = r/T. Thus, by (2.15), (2.16), 

( q . v )  2 = (2/=qT) z2/b (4.6) 

In the equation (2.17) for b the diffusion term is now d =  1:2. Furthermore, 
g can be expressed by the normal unit vector n ~ (V's, - 1 ) Z  and by the 
matrix B of the derivatives of K: g = nrBn, giving 

g =  [ U" v;--  (V's + r/)] Z 2 = -(v's + ~l) + Vs1:'/1: (4.7) 

= - (3"  + ~/) = U"/6" (4.7a) 

where (3.1) and its derivative have been used. Hence 

Gb'  + 2[(v', + q) - G1:'/1:] b + 21:2 = 0 (4.8) 

and 

/~= -22/(ti" + t/) = L3")?2/U " (4.8a) 
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A simplification results by setting b ~ )r Then (4.6) and (4.8) become 

(~,v) z=  (2/rct/T)/~ (4.9) 

Vs~8' + 2(V's + r/)/~ + 2 = 0 (4.10) 

fl = -1/(6', + t/) (4.10a) 

respectively. The only solution of (4.10) that is continuous at the saddle is 

/~(x) = - 2 [ v s ( x ) ] - 2  dx' vs(x') exp -2 t /  , vs(x"----~J (4.11) 

At the turning points/~ becomes infinite, but b remains finite and positive, 
which shows how to continue the integration. 

It is readily verified that in the linear part of v,(x) near the saddle 
[vs(x) ~ ~',x] fl = const = ft. 

In summary, the gradient term becomes 

I ,v[x, Vs(X)]l 

x ( fXx'~(x~)l/21)""'~ = (7~t /T)-1/2  [Vs(X)l fO dx' v,(x') exp - 2 q  (4.12) 

With the results obtained so far the transition rate is easily computed 
numerically: this involves solving (3.1) for Vs(X), evaluating O,v from (4.12), 
and, finally, finding rA .B  from (4.3) and (4.4). In practice it might be 
easier to use (4.10) rather than (4.12), and to integrate it together with 
(3.1) and (4.3) by a Runge-Kutta method. 

4.3. Analytic Results 

Explicit formulas hold both for high friction, where the Kramers result 
and its leading correction in T/t~ will be found, and for rather low friction, 
where an t/-independent expression gives the maximum rate (provided that 
the BLA extends so far). 

The proper Kramers formula is obtained when the exponential in (4.3) 
decays so fast that the linear approximation of the separatrix is sufficent. (6) 
Here we rather consider the cubic approximation, which by (3.3) 
corresponds to the quartic representation of the potential threshold. With 
(4.2) and (4.3) this amounts to 

. - T +  -g-+ .... r a ~ B ~  t/ dxexp ~ vs 0" Vs ~-~ 
- - o o  

• q.~+q.vx+q,v (4.13) 
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The saddle values of ~,, and of its derivatives follow by (4.9) and on 
expanding (4.10). They will be worked out in the Appendix, together with 
the evaluation of (4.13) for small T/tl. The result is the Kramers formula 
multiplied by 

[1 + (T/tl) f(O", 0", 0"', t;) + o(r/~) 2] 

In particular, for 0 " =  0 

[(~ ) 2][ ( 4 0 " )  l r  es" 1 ra~e,~NA(_O,, ) 1/2 - -Ut '  1/2__ t 8~,/ (0;) 2 -- ~2 / 

Note that for 0 ' '  > 0 (so ~ " >  0) the Kramers value is diminished. 

to 

-- 1/2] 

(4.14) 

At low friction one may neglect the exponential in (4.12), which leads 

4,,s Vs(X)] ~ - ( ~ n r )  ,/2 v,[I(x)]-l/= 

= 2(T[/'~ T ) -  1/2 { [-I(x)] 1/2}t 

Inserted into (4.3) this yields 

(4.15) 

ra+~Na(r l /=T)  1/22 exp[-( t / /T)  I(x)] d[I(x)]'/2=Na (4.16) 

Note that this is the Kramers result for r/=0. The approximation (4.15) 
determines the upper bound for t/: 

ex dx" 7 [ 2tl x ) ( x__)2"/-< 
1 ~ exp - 2r/olx, ~ / ~  exp "---:7 In ~ ]  = 

Vs(X )J k-< kx'/ 
t ~  At for x/x ,,, 1; thus, 2q ~ -v ,  [the divergence at x' = 0 is of minor impor- 

tance, as it is integrated over in (4.12)]. Therefore, with (3.2), 

q ~ 2 ( - O " )  1/2 (4.17) 

which implies that the separatrix coincides with Vo at the saddle [note that 
by (4.17) the correction term in (4.14) is negligible]. The lower bound for t/ 
is that given by the BLA and will be specified in Section 4.4. 

We mention an interesting consequence of (4.15): the value of [q.~l at 
x = 0  (after a nonzero number of windings) takes a particularly simple 
form. With Io denoting the accumulated value of I(x) at x = 0 and Vso the 
corresponding ordinate vs(0), (4.2) yields 

v2/2 =tlI o 
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thus 

so that 

Ivsol = (2r/Io) 1/2 (4.18) 

I~].~(0, Vs0)] --- (~qT) 1/2 Iv~ol lo 1/2 = (2/~T) z/2 

which only depends on T. 

(4.19) 

4.4. Validity of the Boundary Layer approximation 

A crucial difference in the role of the two factors tl and T of the 
smallness parameter e lies in the fact that the drift K does not involve T, 
whereas it depends on q, even in such a way that the bistability disappears 
for q = 0. While it is rather obvious that for given q there always exists a 
T >  0 small enough that the BLA holds, the converse is not true: when T is 
fixed at some value ~ m i n ( - U A ,  - U e ) ,  a too small t/entails such a tight 
spiraling of 0g2 that the boundary layer cannot develop any more. 

More specifically, a necessary condition for the BLA to hold is that 
the spacing between consecutive windings of the separatrix, i.e. the tails of 
the domains of attraction g2A.n, be wider than the boundary layer itself, at 
least where the exponential in (4.3) is appreciable. This condition can easily 
be checked by (4.18) and (4.19) at the first return of the separatrix to the v 
axis: the requirement that Ic],~(0, Vso) v~ol >> 1 amounts to 

tlIA,8 >> T or tl ,> T/min(IA,  18) (4.20) 

where IA,8 are the values of I after the first surrounding of the attractor A 
or B, respectively. For their evaluation it is usually sufficient to take the 
action of the frictionless oscillation with E =  0. Physically, (4.20) means 
that the energy loss of an oscillation starting at x = 0 (with velocity V~o) 
and ending there with velocity zero exceeds T. It is important to note that 
(4.20) implies at the same time that the exponential in (4.3), which deter- 
mines the part of 0Q where transitions actually take place, decays before 
the separatrix reaches the v axis again. 

As is natural to expect, a tail of OA,B thinner than the boundary layer 
implies an appreciable magnitude of the term qTp.w neglected in (2.13), 
more precisely, a magnitude comparable with p(p,v)2: with Av denoting the 
width of the tail in v direction, the critical situation is ~,v ~ 1lAy; thus, by 
(2.15), p.~ ~ (rlT)m/Av.  Then, on one hand, p(p,v) 2 ~ Av(p,v) 3 ,.~ 
(r/T) 3/2 (At)) 2; on the other hand, r iTp ,~ '~ t lTp ,v /Av~ (r/T) 3/2 (Av) -2 as 
well. 
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The validity of the BLA is also related to the question of how a par- 
ticle starting at the saddle continues to move after one oscillation (clearly, 
it enters either of the wells with probability �89 when the BLA holds, it 
typically thermalizes in the well initially chosen, and only reattains the 
threshold energy after a time of order r -1. In contrast, when (4.20) is not 
met, the boundary layer along one loop of the separatrix includes the 
saddle itself, which means that the particle has a good chance of escaping 
again from the well after the first oscillation. For an asymmetric potential 
this may hold in one well only, in which case it is easily seen that the 
saddle does not belong to Z; in particular, this shows that Z and 0s no 
longer coincide in general. 

At very low friction a particle with initial energy zero is thus even 
likely to cross both wells several times before thermalizing in one of them. 

5. LOWEST FRICTION 

Below the limit (4.20) the evaluation of (2.6) becomes unfeasible, as 
the separatrix ~(2 of K and the "stochastic separatrix" Z need not coincide 
any more. A simple method for calculating Z, or even the gradient of ~ on 
Z, is not available. 

In the lowest friction range the final remark of Section 4.4 gives 
another possibility for evaluating the transition rate: since a particle with 
energy E ~ 0 typically crosses both wells several times before thermalizing, 
it is sufficient to know the mean times OA,B for reaching the threshold 
energy E = 0  from NA,B, as well as the probabilities PA,e for rether- 
malization in ~A.~" These probabilities do not vary along the E = 0 curve 
in this case, and they are determined by 

r A ~ B = O A 1 P B  (and A ~-* B) (5.1) 

and by the stationarity condition 

PoA rA ~ B = po~rB ~ A 

a s  

P A = P o A O B ( p o A O B + p o B O A )  -1 (and A~--~B) (5.2) 

Inserted into (5.1), this gives 

rA ~ B  = P o B ( p o A O s +  poBOA)  1 (5.3) 

and (2,3) reveals that 

2 = (PoaOB + p o s O A )  -1 (5.4) 

which is symmetric in A and B, as is natural to expect. 
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The times O/1,B were evaluated in Ref. 6 as 

O2I=N/1r / I /1 /T  (and A *-~ B) (5.5) 

where 1/1 is the area enclosed by the curve E =  0 around A; see also the 
remark after (4.20). This result holds for every r/> 0 and for T ~  -UA,e. 

With Po/1 = NB/(NA + N~)  (and A ~ B) it now follows that 

r /1 ~B = N/1rIT-I(IA 1 + I~1) -~ (5.6) 

2 = ( N / 1 + N B ) r l  T 1(i~-~ + I ~ ) - 1  (5.7) 

6. D I S C U S S I O N ,  RELATED W O R K ,  A N D  C O N C L U D I N G  
R E M A R K S  

The present approach is based on the eigenvalue 2, which refers to the 
whole phase space. As it turns out, an essential line in phase space is the 
"stochastic separatrix" Z, from which both metastable states are 
approached with probability �89 the integral (2.6) along Z gives 2 in the 
whole friction range, and thus also the transition rates. The practical deter- 
mination of both Z and the integrand depends on an approximation (the 
BLA), which primarily consists in neglecting a term in the transformed 
backward equation (2.13). Under the BLA, Z is shown to coincide with the 
separatrix of the noiseless motion; moreover, a well-known method for 
evaluating the integrand can be invoked. In this situation the transition 
rate is just half of the inverse mean first passage time on the (deterministic) 
separatrix. A closer inspection of the integrand reveals that the region 
where the transitions actually occur strongly depends on the friction r/; for 
high r/ it is such a narrow part of the separatrix that a saddlepoint 
integration of second order (Laplace method) is sufficient, leading to the 
Kramers result. With decreasing r/this region widens, so that an increasing 
part of the potential becomes important. For a quartic approximation of 
the potential threshold, corresponding to a cubic approximation of the 
separatrix, a higher saddlepoint integration results in a T/q correction of 
the Kramers formula. For lower r/ a Runge-Kutta evaluation is possible. 
Still lower ~/ [see (4.17)] allows a specific approximation, which yields an 
q-independent result, namely the value of the (high-friction) Kramers 
formula with q = 0. When the transition region extends over a full loop of 
the separatrix, the BLA breaks down. Physically, this situation means that 
a particle starting on top of the threshold with v = 0 has an appreciable 
chance of crossing the threshold after one oscillation, since the thermal 
energy may compensate for the friction loss. 
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These findings are to be related with existing work. Among the 
approaches that claim to cover the whole friction range without an explicit 
ad hoc ansatz, we mainly consider those of Matkovsky et al. (MST) (6) and 
of Mel'nikov and Meshkov (MM) (7), but we also point to an interesting 
integral representation for 2 by Dekker, (5) for which a systematic construc- 
tion of trial functions might be found. 

The MST work is based on mean first passage times: vl on the curve 
of the threshold energy Ec and "~2 on the (deterministic) separatrix; starting 
points are either at the metastable state A or somewhere on the Ec curve. It 
is shown that %(A)= z l (A)+  ~2(Ec). The second contribution is represen- 
ted as %(Ec)= V~*(A),  where ~*(A) is the high-friction value of % ( A )  and 
where V (0 < V< 1) is given by an integral that accounts for the fact that 
for low friction the separatrix and the Ec curve become very close. The 
expression [ z l (A)+  2%(Ec)]-1 for the rate actually interpolates between 
the results for extreme friction. However, the first correction to the high- 
friction case, which can be obtained by expanding V, differs from (4.14) in 
its dependence on the potential: instead of a higher derivative at the 
threshold, it involves the surface enclosed by the E~ curve, which is a non- 
local functional of the potential well. 

The MM theory uses action and energy rather than x and v, and it 
establishes an integral equation with a kernel that is approximated for the 
low-friction case. Indeed, for lowest q, the solution agrees with (5.6) and 
confirms the ~3/2 correction of Ref. 13, and it increases monotonically with 
~. To cover also the higher friction domain, the authors simply multiply 
their result by a factor that is approximately one for small q and 
reproduces the Kramers result for large ~. Yet this procedure is merely a 
crude approximation, as can be seen from the fact that it accounts for the 
potential only by the action of the frictionless motion and by the curvature 
at the threshold, while already (4.14) shows a different dependence (the 
Arrhenius factor and the contribution from the potential minima are not 
concerned by this argument). 

Actually, the MM theory and the present one are complementary, 
as the former describes the increasing part and the latter the (slowly) 
decreasing part of the transition rate as a function of 1/. 

A P P E N D I X  

The evaluation of (4.13) involves the expansion of 

f ~ dx exp[- - -  ( A x  2 -k- Bx  3 + Cx4)/6 2 ] (a + bx + cx  2) (A.1) 
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for small 62= T/r I. Clearly, A = -g's/2 > 0; moreover, C > 0 is supposed for 
the present. Substituting x = @ and expanding 

e x p ( -  6By 3 - -  ~ 2 C y 4 )  ~ I - ( ~ B y  3 - ( ~ 2 C y 4  -J~ g)2B2y6/2 

to order (~2 yields 

6 f~-o~ dy ex p ( -Ay 2 ){a  + g)Z[cy2 -- (aC + bB) y4 + (aB2/2) y6] } 

With 

foo dy e x p ( - A y  2) yZk = 1. 3 (2k- 1) 
2~A k + 1/2 

this results in 

( )1J2 E ( 6 a + 6  2 c 3 a C + b B  15aBe']]  
2A 4 A 2 t- 1-6 -A-5-J J (a.2) 

The assumption C > 0 can now be dropped by analytic continuation. 
We briefly work out the coefficients. While A, B, and C are evident, 

the a, b, and c are to be obtained from (4.9) and (4.10). By (4.9) and its 
first and second derivatives it follows that 

a= (2/zc~lrfi) ~/2, b = -�89 c= - la[f l" / f i -~(f f / f l )2] (A.3) 

Furthermore, (4.10) yields 

fl-~ = -(3"  + ~/) = E(U2) 2 - 0"3 1/2 __ U2 

fl'/~ = -2~"/(3t~" + 2q) (A.4) 

fl"/~ = - Iv]' - 5(t~])2/(3~5 + 2q)]/(2~', + r/) 

By taking a out of the curly bracket, we obtain for (A.2) 

2 [(q/2) 2 -  U"] l /2 - t / /2  { +TFc /a  3 C+ (b/a) B 15 BZq) 
( ~_~,,)1/2 1 t/LZA 4 A 2 +--i-~-SJj~ (A.5) 

where c/a and b/a are given by (A.3) and (A.4). 
The case 0 " =  0 entails a substantial simplification, since, by ~"=  0, B 

vanishes and c/a reduces to ~"/4(2~" + ~/). 
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